

Junior Balkan MO 2006

1 If $n>4$ is a composite number, then $2 n$ divides $(n-1)$!.
2 The triangle $A B C$ is isosceles with $A B=A C$, and $\angle B A C<60^{\circ}$. The points D and E are chosen on the side $A C$ such that, $E B=E D$, and $\angle A B D \equiv \angle C B E$. Denote by O the intersection point between the internal bisectors of the angles $\angle B D C$ and $\angle A C B$. Compute $\angle C O D$.

3 We call a number perfect if the sum of its positive integer divisors(including 1 and n) equals $2 n$. Determine all perfect numbers n for which $n-1$ and $n+1$ are prime numbers.

4 Consider a $2 n \times 2 n$ board. From the i th line we remove the central $2(i-1)$ unit squares. What is the maximal number of rectangles 2×1 and 1×2 that can be placed on the obtained figure without overlapping or getting outside the board?

