

- 1 If n > 4 is a composite number, then 2n divides (n-1)!.
- 2 The triangle ABC is isosceles with AB = AC, and $\angle BAC < 60^{\circ}$. The points D and E are chosen on the side AC such that, EB = ED, and $\angle ABD \equiv \angle CBE$. Denote by O the intersection point between the internal bisectors of the angles $\angle BDC$ and $\angle ACB$. Compute $\angle COD$.
- 3 We call a number *perfect* if the sum of its positive integer divisors(including 1 and n) equals 2n. Determine all *perfect* numbers n for which n 1 and n + 1 are prime numbers.
- 4 Consider a $2n \times 2n$ board. From the *i*th line we remove the central 2(i-1) unit squares. What is the maximal number of rectangles 2×1 and 1×2 that can be placed on the obtained figure without overlapping or getting outside the board?